CONDENSATION OF STEAM in nozzles and turbine cascades

Miroslav Šťastný

CONDENSATION OF STEAM in nozzles and turbine cascades

(electronic version)

Miroslav Šťastný

Title: Condensation of steam in nozzles and turbine cascades

Author: Prof. Miroslav Šťastný

e-mail: mfstastny@volny.cz

Approved by the Scientific editorial board of University of West Bohemia in Pilsen.

Reviewers: Ing. Michal Hoznedl, Ph.D. Doosan Škoda Power, s.r.o. Ing. Ladislav Tajč, CSc.

Doosan Škoda Power, s.r.o.

Edition: 2nd Edition (1st electronic)

Edition number: 55-096-15 Number of publication: 2206

Publisher: University of West Bohemia Univerzitní 8, 306 14 Plzeň, Czech Republic

Typesetting: Mgr. Jakub Pokorný

© Prof. Miroslav Šťastný © University of West Bohemia

Published by the University of West Bohemia in Pilsen, 2015. ISBN 978-80-261-0542-8 DOI https://doi.org/10.24132/ZCU.2015.05428

This "late harvest" is dedicated to my wife for her patience with my research work.

The author would like to thank the mathematician Dr. Miroslav Šejna, for the numerical modelling and calculations.

The author is grateful for the support given by the University of West Bohemia in Pilsen, Department of Power System Engineering, Czech Republic.

The author is also grateful for cooperation with the International Association for Properties of Water and Steam, Power Cycle Chemistry Group.

CONTENTS

1.	INTR	ODUCTION	. 8
2.	STEA 2.1. Ex 2.2. Ex 2.3. Cl	M EXPANSION IN PHASE TRANSITION ZONE xpansion with hetero-homogeneous condensation xpansion with binary nucleation and condensation hemical impurity NaCl in steam	9 . 9 9 . 9 9 . 11 13
3.	COM	PUTATIONAL MODEL AND CODE	16
	3.1. Fl	ow with homogeneous condensation	16
	3.1.1.	Governing equations	16
	3.2. Fl	ow with hetero-homogeneous condensation	17
	3.2.1.	System of Euler equations	18
	3.2.2.	Equations of spontaneous nucleation	19
	3.2.3.	Equations of growth of droplets $(r_h = r_{hom})$	19
	3.2.4.	Properties of the soluble chemical impurity	20
	3.3. Fl	ow with binary nucleation and condensation	20
	3.3.1.	System of Euler equations	21
	3.3.2.	Equations of binary and spontaneous nucleation	22
	3.3.3.	Equations of growth of hetero and homogeneous droplets	23
	3.4. Nu	umerical code	23
4.	CONI	DENSATION IN NOZZLES	24
	4.0.1.	2D Nozzles and Flow Mode	24
	4.1. C	ondensation in the nozzle with high expansion rate	24
	4.1.1.	Calculation Results of hetero-homogeneous model	24
	4.1.2.	Conclusions of hetero-homogeneous model	29
	4.1.3.	Results of binary nucleation and condensation model	30
	4.1.4.	Conclusions of binary nucleation and condensation model	33
	4.2. C	ondensation in the nozzle with low expansion rate	34
	4.2.1.	Calculation Results of hetero-homogeneous model	34
	4.2.2.	Conclusions of hetero-homogeneous model	37
	4.2.3.	Results of binary nucleation and condensation model	38
	4.2.4.	Conclusions of binary nucleation and condensation model	43

5. CONDENSATION IN NOZZLE CASCADES	45
5.1. Condensation in the nozzle cascade of 200 MW turbine	45
5.1.1. Turbine cascade and flow mode	45
5.1.2. Calculation results of homogeneous model and effect of surface	ice
tension	46
5.1.2.1. Surface tension $\boldsymbol{\sigma} = \boldsymbol{\sigma}_{\infty}$	46
5.1.2.2. Surface tension $\boldsymbol{\sigma} = 0.9 \boldsymbol{\sigma}_{\infty}$	50
5.1.3. Comparison of computational results with experiments	51
5.1.4. Conclusions of homogeneous condensation model	53
5.1.5. Calculation results of hetero-homogeneous model and effect of the heterogeneous droplets concentration and of their radii	:he 53
5.1.6. Calculation results of hetero-homogeneous model and effect of t measured heterogeneous droplets	:he 58
5.1.7. Analysis of effects of the concentration of heterogeneous droplets a of their radii on steam condensation	nd 61
5.1.8. Calculation results of binary nucleation and condensation model a effects of expansion rate	nd 64
5.1.9. Calculation results for binary nucleation and cascade outlet pressu $P_{a} = 34\ 300\ Pa\ (M_{ab} = 1.10)$	ıre 64
5.1.10. Calculation results for binary nucleation and cascade outlet pressu $P_a = 44500 \text{ Pa} (M_{air} = 0.87)$	ıre 68
5.1.11. Calculation results for binary nucleation and cascade outlet pressu $P_e = 48\ 000\ Pa\ (M_{eis} = 0.79)$	ıre 70
5.1.12. Analysis of the effects of expansion rate	72
5.2. Condensation in the nozzle cascade of a 1000 MW turbine	73
5.2.1. Turbine cascade and flow mode	73
5.2.2. Calculation results for homogeneous condensation	73
5.2.3. Calculation results for binary nucleation and condensation	76
5.2.4. Analysis of results and conclusions for cascade of 1000 MW turbine	78
5.3. Thermodynamic losses and outlet flow angles in nozzle cascades wi	ith
condensation	78
5.3.1. Definitions of losses	78
5.3.1.1. Thermodynamicloss	78
5.3.1.2. Subcoolingloss	78
5.3.1.3. Reversion loss	79

5.3.2. Calculation results for 200 MW cascade, homogeneous condens $(M_{\perp} = 1.10)$	ation 80
5.3.3. Calculation results for 200 MW cascade, binary nucleation condensation ($M_{eis} = 0.87$)	and 81
5.3.4. Calculation results for 1000 MW cascade, binary nucleation condensation ($P_e/P_{at} = 0.65$, $M_{eis} = 0.83$)	and 82
5.3.5. Main results of thermodynamic losses	83
5.4. Condensation effects in transonic flow in nozzle cascades	83
5.4.1. Experimental method of investigation	83
5.4.2. Results of experiments	84
5.4.2.1. Experiments at constant Mach number	84
5.4.2.2. Experiments at constant inlet humidity	86
BLADES IN PHASE TRANSITION ZONE	. 88
6.2. Operation of turbines using first wet stages with steel mobilades6.3. Operation of turbines using first wet stages with titanium	oo oving 89 alloy
 6.2. Operation of turbines using first wet stages with steel mobilades 6.3. Operation of turbines using first wet stages with titanium moving blades 	88 oving 89 alloy 90
 6.2. Operation of turbines using first wet stages with steel mobilades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 	88 oving 89 alloy 90 91
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 	88 oving 89 alloy 90 91 93
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 	 80 89 alloy 90 91 93 93
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 6.3.2.2. Structure of the L-1 stage blade surfaces with deposits 	88 ving 89 alloy 90 91 93 93 95
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 6.3.2.2. Structure of the L-1 stage blade surfaces with deposits 6.3.3. Conclusions of steam chemistry and turbine blades 	88 ving 89 alloy 91 93 93 95 97
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 6.3.2.2. Structure of the L-1 stage blade surfaces with deposits 6.3.3. Conclusions of steam chemistry and turbine blades 	88 ving 89 alloy 91 93 93 95 97 . 99
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 6.3.2.2. Structure of the L-1 stage blade surfaces with deposits 6.3.3. Conclusions of steam chemistry and turbine blades 	88 ving 89 alloy 90 91 93 93 93 95 97 . 99 102
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 6.3.2.2. Structure of the L-1 stage blade surfaces with deposits 6.3.3. Conclusions of steam chemistry and turbine blades 	88 ving 89 alloy 90 91 93 93 93 93 95 97 . 99 102 103
 6.2. Operation of turbines using first wet stages with steel moblades 6.3. Operation of turbines using first wet stages with titanium moving blades 6.3.1. Audit of the LP part of turbine A 6.3.2. Audit of the LP part of turbine B 6.3.2.1. Deposits on first wet stage blades 6.3.2.2. Structure of the L-1 stage blade surfaces with deposits 6.3.3. Conclusions of steam chemistry and turbine blades REFERENCES ABSTRACT INDEX Notation	88 ving alloy 89 alloy 90 91 93 93 95 97 . 99 102 103 103

1. INTRODUCTION

The process of condensation of the steam flowing through the LP part of a turbine is evidently the last mystery of steam turbines. It has already been treated by Stodola [26]. The condensation is a complicated process, and considerable unwanted effects occur - stress corrosion of blades and rotors in the Phase Transition Zone of the flow path, the erosion of moving blades of the last stages and a drop of efficiency of the wet stages. The problems of condensation in steam turbines are still topical – see the "Baumann Centenary Conference", Cambridge 2012 [30, 31].

The experiments performed in converging diverging (CD) nozzles with higher expansion rates allowed the understanding of the homogeneous condensation of the flowing steam in more detail. It was understood that homogeneous condensation in steam turbines should occur suddenly at the Wilson line with sufficient subcooling of the steam and at corresponding values of equilibrium wetness about y = 3 % - see Gyarmathy [16].

Measurements carried out in turbines did not fully confirm the conclusions from the CD nozzle measurements and indicated that the condensation can run more uniformly. Steltz, Lee and Lindsay [25] have proved the existence of the so called "Salt Solution Zone" in steam turbines. Nucleation and condensation occur above the saturation line in the superheated zone on molecules of NaCl, Na₂SO₄, etc. The presence of heterogeneous condensation was confirmed by experiments with a model steam turbine by Dibelius et al. [6] and with full scale turbines by Walters, Langford [28] and others.

From the summary of the existing knowledge it appears that in the LP part of the steam turbines homogeneous condensation and heterogeneous condensation are running in parallel. The latter is dependent on the impurities in the steam and prevails when there is a high content of impurities.

Experiments with the effects of various chemicals on the flow with condensation in a convergent-divergent nozzle were performed as part of the international project "Steam, Chemistry, and Corrosion in the Phase Transition Zone of Steam Turbines" [5]. Petr and Kolovratník performed the experiments at the Czech Technical University (CTU) experimental facility in Prague, Czech Republic.

The 2D computational model and the COCHEM Flow code were developed for a more detailed understanding of the condensation process and of the behaviour of corrosive salts in the blade cascades. This enabled the numerical modelling of the flow with homogeneous condensation, the simulation of the heterogeneous condensation, the description of the precipitation of corrosive salts (NaCl) in the superheated steam and the presence of droplets with salt content (NaCl) in the Salt Solution Zone.

2. STEAM EXPANSION IN PHASE TRANSITION ZONE

2.1. Expansion with hetero-homogeneous condensation

The real steam expansion lines, based on measurements in a 200 MW steam turbine, can be seen in the enthalpy-entropy diagram shown in Fig. 2.1.1.

Fig. 2.1.1. Enthalpy-entropy diagram of the steam expansion in the LP part of a 200 MW turbine.

It can be seen in the enthalpy-entropy diagram that the steam expansion line for 180 MW load intersects the NaCl three-phase boundary (TPB), passes through the salt solution zone (SSZ) and intersects the steam saturation line (SSL). All these effects appear in the third (L-1) stage. The expansion in this stage shows an important increase of entropy as a consequence of the thermodynamic loss and subcooling of the steam.

The Wilson line for spontaneous condensation is also drawn in the diagram. It is based on measurements performed by Gyarmathy and Meyer [11] in nozzles for expansion rates in the range $P_r = 1000 - 5000 \text{ s}^{-1}$. The corresponding equilibrium wetness at the Wilson line is $y = 3.1 \pm 0.2$ %. It follows that the phase transition zone, from the top at the TPB down to the Wilson line, is here situated in the L-1 stage and partly in the final (fourth) stage.

Nucleation of two types can occur in the steam flowing in a nozzle or in a turbine: spontaneous (homogeneous) and heterogeneous. Spontaneous nucleation occurs during the expansion of pure steam below the steam saturation line (SSL) with sufficient subcooling. This is followed by the growth of the droplets due to condensation. Heterogeneous or binary nucleation can start in the salt solution zone (SSZ) above the SSL by nucleation on chemical impurities contained in the superheated steam.

Superheated steam expanding through a steam turbine contains impurities of various kinds. From the point of view of heterogeneous nucleation it is possible to divide these impurities into two categories. Solid particles, insoluble in water and in the steam, fall into the first category. The concentration of these solid impurities in the steam is most probably too small to affect the nucleation process to any significant degree.

Chemicals that are soluble in steam form the second category. These chemicals can be dissolved in superheated steam and they can also be present in the form of molecular clusters. There are numerous inorganic and organic chemicals in the second category.

The computational model includes the homogeneous condensation of droplets and heterogeneous condensation on the droplets that are created in the Salt Solution Zone. This is the model of hetero and homogeneous condensation.

The basic ideas of the computation model are obvious from the transonic steam expansion in the blade cascade in the phase transition zone with the presence of chemical impurities in the steam - see Fig. 2.1.2.

Fig. 2.1.2. Steam expansion line and chemical impurities in phase transition zone.